Consumption of methane by soils.
نویسندگان
چکیده
Measurements of the methane flux and methane concentration profiles in soil air are presented. The flux of methane from the soil is calculated by two methods: a) Direct by placing a static open chamber at the soil surface. b) Indirect, using the (222)Rn concentrations profile and the (222)Rn flux in the soil surface in parallel with the methane concentration ((222)Rn calibrated fluxes). The methane flux has been determined in two kinds of soils (sandy and loamy) in the surroundings of Málaga (SPAIN). The directly measured methane fluxes at all investigated sites is higher than methane fluxes derived from "Rn calibrated fluxes". Atmospheric methane is consumed by soils, mean direct flux to the atmosphere were - 0.33 g m(-2)yr-1. The direct methane flux is the same within the measuring error in sandy and loamy soils. The influence of the soil parameters on the methane flux indicates that microbial decomposition of methane is primarily controlled by the transport of methane.
منابع مشابه
Methane Production and Consumption in Loess Soil at Different Slope Position
Methane (CH(4)) production and consumption and soil respiration in loess soils collected from summit (Top), back slope (Middle), and slope bottom (Bottom) positions were assessed in laboratory incubations. The CH(4) production potential was determined under conditions which can occur in the field (relatively short-term flooding periods with initially ambient O(2) concentrations), and the CH(4) ...
متن کاملStructural and functional response of methane-consuming microbial communities to different flooding regimes in riparian soils
Climate change will lead to more extreme precipitation and associated increase of flooding events of soils. This can turn these soils from a sink into a source of atmospheric methane. The latter will depend on the balance of microbial methane production and oxidation. In the present study, the structural and functional response of methane oxidizing microbial communities was investigated in a ri...
متن کاملControls on soil methane fluxes: Tests of biophysical mechanisms using stable isotope tracers
[1] Understanding factors that control methane exchange between soils and the atmosphere remains one of the highest priorities for climate change research. Here we use a novel isotope-based technique to investigate the relative importance of three mechanisms for explaining landscape-scale variations in soil methane emissions: (1) consumption of methane by methanotrophic bacteria, (2) quantity o...
متن کاملDifferential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils.
The impact of environmental perturbation (e.g., nitrogenous fertilizers) on the dynamics of methane fluxes from soils and wetland systems is poorly understood. Results of fertilizer studies are often contradictory, even within similar ecosystems. In the present study the hypothesis of whether these contradictory results may be explained by the composition of the methane-consuming microbial comm...
متن کاملSeparating methane production and consumption with a field-based isotope pool dilution technique
[1] Despite the importance of methane for climate, it has remained difficult to measure gross rates of methane production and consumption without inducing artifacts. To remedy this, we have developed, tested, and applied a field-based CH4 pool dilution technique. Laboratory tests, sensitivity analyses, and field data indicate that this technique is robust for measuring gross rates of methane pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental monitoring and assessment
دوره 31 1-2 شماره
صفحات -
تاریخ انتشار 1994